3.267 \(\int \frac{\cos ^2(e+f x)}{\sqrt{a+b \sec ^2(e+f x)}} \, dx\)

Optimal. Leaf size=87 \[ \frac{(a-b) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{2 a^{3/2} f}+\frac{\sin (e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{2 a f} \]

[Out]

((a - b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*a^(3/2)*f) + (Cos[e + f*x]*Sin[e +
f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(2*a*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0992395, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {4146, 382, 377, 203} \[ \frac{(a-b) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{2 a^{3/2} f}+\frac{\sin (e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{2 a f} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^2/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

((a - b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*a^(3/2)*f) + (Cos[e + f*x]*Sin[e +
f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(2*a*f)

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 382

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a*d
)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && EqQ[
n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1]) && NeQ[p, -1]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x)}{\sqrt{a+b \sec ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right )^2 \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 a f}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 a f}\\ &=\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 a f}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{2 a f}\\ &=\frac{(a-b) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{2 a^{3/2} f}+\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 a f}\\ \end{align*}

Mathematica [A]  time = 0.256906, size = 126, normalized size = 1.45 \[ \frac{\sqrt{a \cos (2 (e+f x))+a+2 b} \left (\sqrt{a} \tan (e+f x) \sqrt{-a \sin ^2(e+f x)+a+b}+(a-b) \sec (e+f x) \tan ^{-1}\left (\frac{\sqrt{a} \sin (e+f x)}{\sqrt{-a \sin ^2(e+f x)+a+b}}\right )\right )}{2 \sqrt{2} a^{3/2} f \sqrt{a+b \sec ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^2/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(Sqrt[a + 2*b + a*Cos[2*(e + f*x)]]*((a - b)*ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]]*Sec
[e + f*x] + Sqrt[a]*Sqrt[a + b - a*Sin[e + f*x]^2]*Tan[e + f*x]))/(2*Sqrt[2]*a^(3/2)*f*Sqrt[a + b*Sec[e + f*x]
^2])

________________________________________________________________________________________

Maple [C]  time = 0.379, size = 1056, normalized size = 12.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

1/2/f/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/a*sin(f*x+e)*(2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I
*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/
2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/si
n(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b
)/(a+b))^(1/2))*a*sin(f*x+e)-2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b
)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e
)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2
)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b*sin(f*x+e)-2^
(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)
*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e
))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2
)/(a+b)^2)^(1/2))*a*sin(f*x+e)+2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b
)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e
)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-
4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b*sin(f*x+e)+cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))
^(1/2)*a-cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a+cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(
1/2)*b-((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b)/(-1+cos(f*x+e))/cos(f*x+e)/((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)
^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{2}}{\sqrt{b \sec \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^2/sqrt(b*sec(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 0.894785, size = 1215, normalized size = 13.97 \begin{align*} \left [\frac{8 \, a \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + \sqrt{-a}{\left (a - b\right )} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \,{\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \,{\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \,{\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} - 8 \,{\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \,{\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \,{\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} -{\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt{-a} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right )}{16 \, a^{2} f}, \frac{4 \, a \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) -{\left (a - b\right )} \sqrt{a} \arctan \left (\frac{{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \,{\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} +{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt{a} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \,{\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} -{\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right )}{8 \, a^{2} f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) + sqrt(-a)*(a - b)*log(128*a^
4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 -
 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*co
s(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*
b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)))/(a^2*f),
1/8*(4*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - (a - b)*sqrt(a)*arctan(1/4*(8
*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x
 + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x
+ e))))/(a^2*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos ^{2}{\left (e + f x \right )}}{\sqrt{a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2/(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(cos(e + f*x)**2/sqrt(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{2}}{\sqrt{b \sec \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(cos(f*x + e)^2/sqrt(b*sec(f*x + e)^2 + a), x)